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During March, 1961 a redesigned P-21 Ionospheric Probe was 
vibrat ion tes ted  i n  order to:  

1, Evaluate the  new design. 

2, Make vibrat ion measurements a t  c r i t i c a l  p o i n t s  where 
components a re  in s t a l l ed  on the  spacecraf t .  

I n  addition, a multi-accelerometer force-programming servo control  
system fo r  use i n  vibrat ion t e s t i n g  the  P-21 spacecraf ts  was used 
fo r  the  f i r s t  time, and evaluated. 

A b r i e f  study was made of  some of t he  data  analysis  problems 
which the  S t ruc tura l  Dynamics Branch wi$l soon face as a r e s u l t  
of increased test  requirements. 
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INTRODUCT I O N  

During the  summer of 1960, a type P-21 Ionospheric Probe was 
v ibra t ion  t e s t ed  and found t o  be unsatisfactory.  
design was modified extensively i n  an attempt t o  pro tec t  the  del- 
i c a t e  e lec t ronic  components from damaging s t r u c t u r a l  vibrat ion,  
The spacecraf t  electronics consis t  of two major items: 
propagation experiment t ransmit ter  and an electro-acoust ic  probe, 

The o r ig ina l  

c 
An RF- 

- On February 24, 1961 and March 2 and 3, 1961, the  redesigned 
Pvototype P-21 w a s  v ibra t ion  tes ted  on the  GSFC ME? Electronics  Model 
C-50 v ibra t ion  exciter system, 
To evaluate  the  remodeled spacecraf t ,  t o  make v ibra tory  accelerat ion 
measurements a t  c r i t i c a l  points  on the  spacecraf t ,  t o  evaluate a 
multi-accelerometer feedback vibrat ion control  system exciter, and 
t o  explore some of the  data  reduction and analysis  problems the  
T e s t  and Evaluation Division m u s t  deal  with i n  the  near future.  

This t e s t  served several  purposes: 

APPARATUS: 

The vibrat ion equipment employed during the  dynamic t e s t i n g  of 
the P-21 Prototype i n  February and March 2 and 3, 1961 consis ted of 
an MB Electronics  Model C-50 vibrat ion exc i t e r  driven by a Model 
T-888 power amplifier.  
votion console, Vibration data  was sensed by Endevco Model 2221 C 
and Model 2702 amplif iers  and recorded simultaneously on a Honeywell 
Model 3171-4A1 multi-channel frequency-modulated tape recorder. A 
modified Ling Electronics  audio frequency m i x e r ,  four Kqohn-Heit Model 
330-M bandpass f i l t e r s ,  and a Tektronix Model 535 osci l loscope w e r e  
a l so  required for  an evaluation of a special  force programming system, 
Figures (33) through 538) a re  photographs of the  data  recording and 
force programming systems, t h e  Model C-50 vibrat ion exc i te r ,  and the  
o i l  f i lm horizontal  vibrat ion f a c i l i t y ,  

The control u n i t  w a s  an MB Model T288 complex 
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PROCEDURE 

On February 24, 1961, the P-21 Prototype spacecraf t  was mounted on 
the horizontal  s l i p  table tes t  f ix tu re  ( f igures  37 and 38) and v ibra t ion  
t e s t e d  with a sinusoidal  input  accelerat ion of slowly increasing frequency. 
The or ien ta t ion  w a s  such that  the first v ibra t ion  axis corresponded approx- 
imately w i t h  antenna HE' #2. The s inusoidal  t e s t  w a s  followed by a random 
noise vibrat ion test .  The  spacecraf t  w a s  ro ta ted  90° and the above men- 
t ioned tests w e r e  repeated i n  reverse order ,  The 600 cps, X-248 motor 4 

resonant burning simulation tes t  w a s  run f irst  i n  the second t ransverse 

March 2, 1961, the  spacecraf t  w a s  mounted on the force t e s t i n g  f i x t u r e  
(v i s ib l e  behind the f i l t e r s  i n  Figure 33) and the t h r u s t  axis noise  
v ibra t ion  w a s  applied t o  the payload. T h e  t e s t  w a s  stopped u n t i l  March 
3, 1961, due t o  payload t ransmi t te r  f a i l u r e  during t h i s  random noise  test .  
The t ransmi t te r  w a s  repaired,  a f t e r  w h i c h  the sweep-frequency s inusoidal ,  
random, and 600 cps t es t s  w e r e  completed, The following is  a tabula t ion  
of  the s inusoidal  t e s t i n g  levels employed: 

ax is  and then w i t h  the spacecraf t  i n  the o r i g i n a l  or ien ta t ion .  On 
-t 

Direction 

Thrust 
(2-2 A x i s )  

Lateral A 
(x+x h i s )  

Lateral  B 
(y-y A x i s )  

During 
was stopped 

Frequency Range 
cps 

5-50 
50-500 

500-2000 
2000-3000 

5-50 
50-500 
500-2000 
2000-3000 

5-50 
50-500 
500-2000 
2000-3000 

T e s t  Duration Acceleration 
Min. q 0-to-Peak 

1.6 
1,6 
1.0 
0.26 

1.6 
1.6 
1.0 
0.6 

1,6 
1.6 
1.6 
0.6 

2.3 
10.7 
21.0 
54.0 

0.9 
2.1 
4.2 
17 

0.9 
2.1 
4.2 
17 

Y t h e  sweep-frequency s inusoidal  tests,  the v ibra t ion  t e s t i n g  
momentarily a t  500 cps t o  s w i t c h  servo control  ranges. Also, 

a high frequency l imi ta t ion  of  t h e  v ibra t ion  exciter of  3000 cps w a s  not  I 
exceeded, though the spec i f ica t ion  requires  the tes t  t o  be ca r r i ed  out  t o  
5000 cps, 
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The random motion input,  except for  equal izer  response l imitat ions,  
w a s  e s s e n t i a l l y  as  specified: 

PSD ApprOX, 
Frequency Range T e s t  Duration L v e l  A c c e l .  

q-rllls 
5 

Direction cps Min . L L L G E  

Thrust 

. 
5-200 

200-400 
400-2000 

Lateral A 5-25 
25-100 

100-2000 

Lateral B 
cy-y A x i s )  

5-45 
25-100 

100-2000 

4 ( t o t a l )  0.12 5.0 
1 2  db/ 2.4 
octave 4.0 
roll-of f 
0.01 

4 ( t o t a l )  0.60 3.5 
1 2  db/ 1.7 
octave 4.1 
rol l -off  
0.01 

4 ( t o t a l )  0.60 3.5 
1 2  db/ 1.7 
octave 4.1 
rol l -off  
0.01 

COMBUSTION RESONANCE VIBRATION 

Frequency Vector 
Direction cps Acceleration g Duration Sec. 

Thrust A x i s  550-650 120 30 

Transverse Axis 550-650 2 1  30 each axis 

The "equalizer l imitations" mentioned above a re  r ead i ly  seen i n  
Figures 23, 24, 25, and 29. The equalization is everywhere within a f e w  
db of spec i f ica t ions ,  From Figures 5, 6, 7, and 8, it is  evident tha t  

4 t h e  600 cps resonant burning simulation test w a s  shorter than specified.  

Because a su i t ab le  hor izonta l  force programming f i x t u r e  has not y e t  4 
been fabricated,  it w a s  necessary t o  assume tha t  t h e  payload had an 
apparent m a s s  of  f i v e  pounds fo r  the la teral  600 cps tes t ing .  The 600 
cps t h r u s t  axis v ibra t ion  servo s ignal  was derived, as it w a s  for  the en- 
t i r e  v ibra t ion  program, from a s ingle  accelerometer ... bu t  the v ibra t ion  
exciter input  was  var ied I I u P ~ ~  and Itdown" a t  the command of an observer who 
w a s  monitoring, v i a  s t r a i n  gages, 2702 amplifier, and a m e t e r ,  the 600 
pound force input to the payload. The cont ro l  accelerometer w a s  located 
a t  the top  of the force f ix tu re  i n  one of the notches v i s i h l e  i n  Figure 33. 
During the o the r  port ions of t h e  t e s t ing  program f o r  t h e  P 4 1  Prototype, 
the cont ro l  accelerometer w a s  located on thespacecraf t '  f ix ture .  

- 3 -  



Multi-accelerometer Servo Controls 

The f ix ture  employed i n  vibrat ion t e s t i n g  Argo D-4 spacecraf t  is  
qu i t e  f l ex ib l e  a t  the  high frequencies (above 1,000 cps) .  There is  
r e l a t i v e  motion between the exc i te r  t ab l e  and t h e  spacecraf t  in te r face  
and between any t w o  points  on the spacecraf t  in te r face  which contact 
the  exc i t e r  f ix ture  mounting plate .  Because it is  desired t o  apply a 
known sinusoidal  motion t o  the base of the  spacecraf t ,  and because a 
s ing le  servo control accelerometer w i l l  not necessar i ly  "see" an accelera- 
t i o n  representat ive of the ax ia l  input t o  the  spacecraf t  regardless  of 
locat ion a t  the base of the spacecraf t ,  it seems advisable t h a t  a b e t t e r  
method of obtaining the servo control  s ignal  should be found. Ideal ly ,  
many accelerometers could be evenly spaced on t h e  circumference of the  
spacecraf t  interface,  the  output s igna ls  averaged, and the  resu l t ing  
s igna l  fed back in to  the  exis t ing exc i te r  servo loop, A p rac t i ca l ,  
economical compromise was necessary, however, because each accelerometer 
s igna l  m u s t  be f i l t e r e d  separately,  Accordingly, fo r  the  servo system 
evaluation t e s t  three accelerometers were i n s t a l l e d  120' apart  on the  
top of the  t e s t  f i x tu re  and connected v i a  appropriate amplif iers ,  f i l t e r s ,  
and an adder network t o  the vibrat ion exc i te r  servo control  system. 
Separate f i l t e r i n g  i s  necessary because r a t t l i n g  of spacecraf t  antennae, 
spr ings,  e t c ,  can generate high frequency vibrat ion within the  spacecraf t  
s t ruc ture ,  These vibrat ions are  re f lec ted  back t o  the  base of t he  space- 
craEt where they are sensed by the  control  accelerometers. Two such 
r a t t l i n g  s ignals  could add t o  form lower frequency "beats" which would 
pass  through a s ingle  f i l t e r  a t  the  output of the mixer and thereby in- 
crease the t o t a l  feedback s ignal ,  resu l t ing  i n  an "undertest".  By passing 
ea& acceleroneter s ignal  through a f i l t e r  of cutoff  frequency as  low as  
possible  consis tent  with the highest  t e s t  frequency encountered, one can 
elimfr_ate most of the "beats"  and thus eliminate the  undertesting. A 
deta i led  descr ipt ion of a s ignal  adder c i r c u i t  su i tab le  fo r  a m u l t i -  
accelerometer servo control  system is  presented i n  Enclosure 1. 

c 

Force Proqrmminq:: 

The 550+'650 cps sweep t e s t  i s  executed a t  an accelerat ion leve l  which 
is r e l a t ed  t o  the apparent weight of the  spacecraft .  What is  ul t imately 
desired i s  a vibratory input force of 600 pounds ra ther  than any pa r t i cu la r  y 
accelerat ion,  In  order t o  obtain a servo control  s ignal  t o  f a c i l i t a t e  
programming an input force,  high s e n s i t i v i t y  s t r a i n  gages were mounted on 
a spec ia l  support f ix ture .  The f ix tu re  cons is t s  of an  aluminum hoop machined 
t o  a thickness of 0.050 inch a t  the  center .  The design natural  frequency 
with a load of 5 pounds i s  2400 cps. I t  was estimated t h a t  the mass of the  
por t ion  of the s t r a i n  gage f ix tu re  above the  s t r a i n  gages i s  3 pounds, Thus 
the s t r a i n  gages sense the input force applied t o  the  spacecraf t  p l u s  t he  
force required t o  vibrate  the 3 pound port ion of the f ix tu re  a t  the accelera- 
t i o n  leve l  measured on the top of the  f ix ture .  Because the  force f i x t u r e  
i s  nonresonant a t  the  t e s t  frequency, the  s ignal  proportional t o  the  600 
pound force input t o  the spacecraf t  a t  600 cps can be obtained by subtract-  
ing the instantaneous accelerometer s igna l  from the  instantaneous s t r a i n  
gage s ignal ,  - - 



The subtract ion of the instantaneous amplitudes of the accelerat ion 
and force s igna ls  can readi ly  be done by an e lec t ronic  "adder" such as 
described i n  Enclosure (1) provided an addi t ional  phase inver te r  s tage 
is connected t o  one input. An oscil loscope such a s  the  Tektronhc model 
535 with a d i f f e r e n t i a l  input pre-amplifier u n i t  a l so  lends i t s e l f  readi ly  
t o  t h i s  appl icat ion and provides a high qua l i ty  s ignal  amplif ier  and 
indicat ing device a s  w e l l ,  The three-accelerometer system previously 
described could be used t o  supply an acceleration s ignal  t o  the  force- 
accelerat ion adder. Detai ls  of a complete force-cDntrol servo system 
a re  included i n  Enclosure (2). 

The force programming described here i s  a first attempt t o  more 
accurately s i m u l a t e  the  true dynamic environment of a spacecraft .  
one s t ep  in the d i rec t ion  of t r u e  impedance t e s t i n g  and by no means is the 
bes t  poss ib le  test procedure. The concept of mechanical impedance is  
important because the  payload vibrat ion environment i s  affected by the  
impedance of t h e  supporting launch vehicle s t ruc ture  i n  such a way t h a t  
ac tua l  f i e l d  conditions include simultaneous "rocking" and t o r t i o n a l  
vibrat ion of the spacecraf t  i n  addition t o  the  axial vibrat ion.  The Argo 
D-4 vibra t ion  spec i f ica t ion  requires  l a t e r a l  vibrat ion i n  an attempt t o  
simulate t h i s  complex motion i n  the form of an e a s i l y  reproducible t e s t .  
Neither the uncontrolled "rocking" of the  spacecraft  on the test f ix tu re ,  
nor t h e  l a t e r a l  vibrat ion t e s t  is a perfect  simulation of the in- f l igh t  
environment, The St ruc tura l  Dynamics Branch, therefore ,  may attempt t o  
more adequately simulate launch vehicle environments through the use of a 
mult i -exci ter  system, Such a system could, theore t ica l ly ,  be programmed 
with a measured launch vehicle  impedance, T h e  approximation of the t r u e  
environment v i a  a three dimensional system such a s  t h i s  might require  ex- 
tensive mathematical treatment, an e lectronic  computer, and unusual impedance 
programming c i r c u i t r y  

It i s  

Data Reduction and Analysis: 

O n  February 20, 1961 the  Minneapolis Honeywell Company loaned an FM 
tape recorder t o  the S t ruc tura l  Dynamics Branch fo r  evaluation purposes. 
This machine w a s  exploited w i t h  t he  purpose of t e s t i n g  t h e  data  handling 
capab i l i t i e s  of a tape recording system. The machine proved immediately 
t o  be a g rea t  asset .  
t h e  actual vibrat ion tes t ing.  L a t e r  t he  s igna ls  w e r e  re-recorded on x-y 
p l o t t e r s  v i a  random s igna l  analyzers and logarithmic converters.  
s inusoidal  s igna l  frequency could have been accurately scaled on the  
abscissas  of the resu l t ing  char t sp  b u t  there  was no t i m e  t o  e l iminate  the  
ground loop which resu l ted  when the  tape recorder w a s  connected t o  t h e  
frequency analog s igna l  from the  exc i te r  system o s c i l l a t o r  d i a l .  Fre- 
quencies were measured with an electronic  counter a t  some points  during 
tape  playback b u t  it was not possible,  even w i t h  t h e  a id  of  a low pass  
f i l t e r ,  t o  obta in  many frequency ca l ibra t ion  points  because of the noisy 
character  of much of the recorded data, This noise resu l ted  from r a t t l i n g  
of spr ings,  antennae, e tc .  and also contributed t o  the  average amplitudes 
of t he  s igna ls  recorded, 

Acceleration and force s ignals  w e r e  recorded during 

The 
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The random signals  were played back in to  an 80 channel analyzer- 
f i l t e r  system. This system i s  discussed i n  Enclosure ( 5 ) .  A comparison 
can be made of Figures (11) , (23) , (24) , and (25)  . Figure (23) is  an 8 
minute analysis,  made with a Technical Products model TP 627 wave analyzer, 
of a 2000 cycle bandwidth random signal.  A 5 cycle  bandwidth f i l t e r  was 
employed. Figures (24)  and (25)  were made a t  d i f f e r e n t  speeds with an 
80 channel f i l t e r  analyzer. I n  Figure (11) an 80 second p l o t  made with 
t h i s  analyzer is  compared with a 200 second plot .  Figures (24) and (25)  
correspond within 1 db a t  a l l  frequencies. They are  i n  agreement except 
fo r  unessential  d e t a i l  revealed by the Technical Products Analyzer, The 
excessive "noisiness" of t he  Technical Products Analyzer record is  due t o  
the f a c t  t h a t  the  averaging time of the f i l t e r  output was shor te r  than the  
optimum value. 

-, 

These comparisons indicate  t h a t  t he  80 second, 80 channel f i l t e r  
analyzer graphs are,  fo r  a l l  p rac t i ca l  purposes, a s  good as the  graphs 
obtained i n  8 minutes v i a  the Technical Products sweep-frequency-filter 
system, A s  i s  discussed i n  Enclosure (5 ) ,  t h e  output vol tages  from the 
80 narrow f i l t e r s  a re  approximately Gaussian. Hence, these s ignals  a re  
proportional t o  accelerat ion spec t ra l  densi ty  without the  usual squaring 
operation. The 80  channel analyzer enjoys another advantage over t he  
Technical Products analyzer i n  t h a t  one can sca le  of f  frequencies on the 
graphs simply by counting the  number of f i l t e r  response peaks from one 
edge. 
50,  75.. , .> The t w o  types of f i l t e r s  discussed here have some problems i n  
common i n  t h a t  the random signal  t o  be analyzed i s  usually recorded on a 
tape loop and played back continusously on a tape recorder, One of the  
important problems encountered i n  continuous random signal  analysis  with 
a tape loop system, t h a t  of se lec t ing  t h e  m i n i m u m  tape loop length con- 
s i s t e n t  with usable accuracy, is discussqd i n  Enclosure (4). 

(The f i l t e r s  are  25 cps wide and have center  frequencies of:29CpS, 

A descr ipt ion of the  "qual i ty"  of an accelerometer s igna l  i s  d i f f i -  
cult t o  present on an x-y recorder, A fundamental s inusoidal  waveform can 
of ten be recovered from a "noisy" s igna l  v i a  f i l t e r s ,  subsequently measured 
with respect  t o  amplitude and phase, and compared with bther  s imi la r ly  pro- 
cessed voltages. 
f i l t e r e d  anq measudd, Obwiously, such analysis  would require  an inordinate  

L 
Perhaps a simpler solut ion t o  t h i s  analysis  problem is  t h a t  recent ly  develop- 
ed by the  Chadwick-Helmuth Company, With the  a id  of a modification of the  c 
"Slip-Sync" idea, it is  possible  t o  reproduce galvanometer s ignals  i n  slow 
motion, preserving o r ig ina l  amplitudes and phases i n  the f i n a l  recording. 
I n  t h i s  manner, t e n  inch long sect ions of tlslow motion" char t  recordings 
can be made of important information and enclosed i n  analysis  reports  with- 
out the  necessity of using large quant i t ies  of expensive char t  paper. 
(The St ruc tura l  Dynamics Branch recent ly  placed a $5000 order  f o r  100 r o l l s  
of  such paper).  

In  l i k e  fashion harmonic components can be se l ec t ive ly  

quant i ty  of expensive e lec t ronic  equipment and many valuable man-hours. 
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Random Motion Test Specificaticn: 

The fundamental re la t ionship between acceleration and accelerat ion 
spec t r a l  densi ty  is: 

f 7 
-I *- - 

aL G (f) df 
f 

where G(f) i s  the spec t ra l  density as a function of frequency. The t e s t  
spec i f ica t ion  quoted i n  Enclosure ( 6 )  requires  a 24db per octave r o l l o f f  
between 200 and 400 cps. 
t h i s  requirement is: 

- 
The spectral  densi ty  function which f u l f i l l s  

If we solve the  fundamental equation for  the case of the  x--x ax is  random 
motion specif icat ion,  we have: 

2 
a = 0.06 x ( Z O O )  x f-4 

2 a -1 -1 a =.06 x 16 x 10 
3 (400) - 3(200)3 

= . 0 6 x 1 6 ~ 1 0 ~ ~ 1 0 ~ ~  A) = 3051 

a = 1.87 g rms. 
i n  the  specif icat ion and tras the cause of some confusion u n t i l  it was dis-  
covered t h a t  the specif icat icn was wri t ten for  a pa r t i cu la r  f i l t e r .  
Krohn-Heit Model 330-M has a voltage r o l l o f f  cha rac t e r i s t i c  of apprcx- 
imately 24 db per  octave and w i l l  meet the specif icat ion requirements 
within f: 3 db. 

than the 0.005 g2/cps specified.  

Aural Analysis: 

This nufiber is  s l i g h t l y  grea te r  than the  1.7g r m s  quoted 

The 

A l i t e r a l  24 db per octave cha rac t e r i s t i c  wo Id require  
t h a t  the  accelerat ion spec t ra l  density a t  400 cps be 0.004 g Y /cps ra thar  

There i s  one method of data  analysis  which seems not t o  have received 

It is  possible tc play a tape recording of an accelerometer s ignal  
4 enough a t ten t ion  and Yrhich may soon be put  t o  use by the  S t ruc tura l  Dynamics 

Branch: 
through an audio amplifier and loudspeaker and t o  l i s t e n  t o  the resu l t ing  
sound. This process must be experienced t o  be f u l l y  appreciated. 
f a c i l i t a t e s  t he  analysis  of events which occur during a s inusoidal  test, 
i.e. antennae r a t t l i n g ,  e tc . ,  bu t  the most important appl icat ion is  i n  
the  analysis  of a random signal.  
s igna l  w i l l  not synchronise i n  any meaningful fashion, nor w i l l  a continuous 
oscil lograph record necessar i ly  reveal t o  any but  the  most experienced 
cbserver much of the hidden de ta i l .  It is remarkably simple, however, t o  

It  

An osci l loscope presentat ion of a random 
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obtain information aurally., 
above the noise s ignal  and local ized by successive monitoring of several  
accelerometers mounted a t  various points  on the  s t ructure .  

Rat t l ing of p a r t s  and components can be heard 

Aural monitoring was vividly demonstrated i n  October of 1960 when 
D r ,  R, 0. Belsheim of the Naval Research Laboratory played a recording 
of a s ignal  from an accelerometer mounted on the  X-248 rocket motor, 
The 600 cps resonant burning was c l ea r ly  dis t inguishable  a s  were the  
sounds of portions of t h e  motor l i n e r  s t r i k i n g  the  th roa t  of t he  nozzle. 

RESULTS 

Vibration: 

O n  February 24, 1961 a f t e r  t h e  two complete vibrat ion programs had 
been run i n  the  t ransverse axes, the  payload was mounted i n  posi t ion f o r  
the t h r u s t  axis  vibrat ion,  After  the  lunch recess, it was discovered t h a t  
the  counter employed t o  monitor t he  payload t ransmi t te r  frequency indicated 
t h a t  t he  frequency had sh i f tbd  s l igh t ly ,  Further t e s t i n g  was delayed while 
the payload and the  counter were both removed t o  Building I1 fo r  examina- 
t ion ,  The counter proved t o  be accurate,  b u t  t he  frequency s h i f t  was not 
judged t o  be a f a i lu re  because the t ransmit ter  had s t ab i l i zed  a t  a new 
frequency. 

Vibration tes t ing  was continued again on March 2, 1961 with the  t h r u s t  
After three minutes of vibrat ion the  payload t ransmi t te r  ax is  random t e s t .  

f a i l e d  and the  t e s t  was discontinued, pending examination, Subsequently, 
a broken wire i n  the t ransmit ter  modulle was replaced and t e s t i n g  w a s  re- 
sumed on March 3, 1961, beginning with the  sweep frequency s inusoidal  t e s t ,  
After  about three minutes of s inusoidal  vibrat ion,  the  spacecraf t  t rans-  
m i t t e r  frequency had d r i f t e d  about 100 cps, b u t  then s t ab i l i zed  a t  the  new 
frequency, The t e s t ing  program was completed without fur ther  mishap. 

Multi-accelerometer Servo: 

With regard t o  the  multi-accelerometer mixing problem, a successful  
bare-table s inusoidal  sweep frequency t e s t  was completed using the  mixer 
output s ignal  for  t h e  servo control  voltage source. Time did not permit 
comparison of the mixer s igna l  with s ing le  accelerometer s igna ls  t o  ver i fy  
the cancel la t ion of rocking modes; nor was there  time t o  test the theoret ic-  
a l  operation of the complete force programming c i r c u i t  p r i o r  t o  spacecraf t  
vibrat ion tes t ing ,  Obviously, these unproved systems could not be used 
during the  actual  t e s t i n g  of the  P-21 spacecraf t .  

9 

Data Reduction- -i 
The data  reduction problem-study revealed t h a t  probably the most 

p r a c t i c a l  way of handling vibrat ion data ,  despi te  the  dynamic range l imita-  
t i o n  (approximately 40,db f o r  *.e Honeywell machine) 8 i s  t o  record the  
data  on a tape recorder and then t o  t r a n s f e r  t h i s  data  t o  x-y recorders,  
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The s inusoidal  test recording should be supplemented by a d, co 
frequency analog voltage i n  order  t h a t  the x axis of the r e su l t i ng  curves 
can be ca l ib ra t ed  with respect  t o  frequency, I f  it is desired t o  p l o t  
r e l a t i v e  responses a t  various points  on a spacecraf t  w i t h  respect  t o  an 
ihput,  f o e o O  "Q", it would be well  t o  have a voltage r a t i o  computer such 
ag; is desckibed i n  Figure (391, Such a computer would save a considerable 
anlount of t h e  over the point-by-point hand-plotting method, and would be 
more accurate by v i r t u e  of continuity,  Alternat ively,  t h e  Moseley Company 
has developed a c i r c u i t  wherein two logarithmic converters and an impedance 
network perform the  same function as  a r a t i o  computer, An arrangement of 
two OF more x-y p l o t t e r s  could be set up t o  reduce data  from several  tape 
channels simultaneously, thereby reducing analysis  time by a f ac to r  of 
2 o r  3 o o o  etc. 

Acceleration Measurements: 

The data  reduction method described above was developed to  present 
i n  a more convenient foran the requested information obtained from the 
vibrat ion l e v e l  measuremenismade on the spacecraft .  Because it was desired 
t o  know what vibratory accelerat ions a replacement component of approx- 
imately the  same dimensions a s  t h e  k o u s t i c  Probe would "see" on top  of 
the  spacecraf t  frustrum, it was not necessary t o  p l o t  "Q" versus frequency. 
Had graphs of  t ransmiss ib i l i ty  been required, a r a t i o  computer would have 
been a prerequis i te ,  The measurement data  i s  presented i n  Figures 1-8 
and 15-32 f o r  accelerometers on the  top of  t h e  frustsum as w e l l  as those 
cemented on top  of  t he  t ransmi t te r  and on t h e  telemetry base p la te ,  The 
r e l a t i v e l y  la rge  number of graphs of useful data  enclosed, f a r  more than 
it has formerly been poss ib le  t o  present, i l lus t ra tes  the  value of the 
tape-analyzer-plotter system, Figures #9, 10, 12-22, 26-28, 30-32 are 
enclosed as requested, They may be referred t o  f o r  comparison in fu ture  
reports ,  The graphs were produced i n  1 1/2 man days, a saving of approx- 
imately 5 man days over conventional methods, "Q" values of the maximum 
sinusoidal  responses and of the overal l  random response a re  tabulated be- 
low, Frequencies above 1000 cps a r e  not considered because of e r r o r s  
introduced by the f l e x i b i l i t y  of the mounting f ixture .  
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P-21 Payload Maximum Sinusoidal Response 

1) THRUST AXIS: Base 
Fru s trum Transmitter Plate 

Input, q Frequency, cps g. 9 L Q s a  
14 
19 

2) TRANSVERSE: 

2.1 
2.1 
2.1 
2.1 
4.2 
4.2 

200 
600 

45 3.2 
25 1.3 

Frequency, Tranwtter, 
cz3s J s t  Orlentation s 

90 
100 
200 
400 
600 
650 

Exciter Table 
Transmitter 
Base Plate 
Frustrum 

10 4.8 

10 4.8 
10 4.8 
10 2.4 

- - 

- - 

THRUST AXIS RANDOM 

Acceleration 
q m s  

2.4 
4.3 
4.8 
4.8 

28 2.0 140 10- 
25 1.3 63 3.3 

Transmitter, g 
2nd Orientation Q 

I' Q" 

- 
1.8 
2.0 
2.0 

12.6 6.0 
4.5 2.1 



CONCLUSIONS 

Vibrations 

Testing of the P-21 Prototype in February and March 1961, 
has revealed that a substantial improvement in design was made 
over a previous model tested during 1960. 
transmitter failed once during testing indicates that there may 
still be some packaging problems to solve. 

The fact that the 

Force Proqramminq: 

No definite conclusions can yet be reached concerning the 
practicality of force programming; however, preliminary tests 
indicate that the system merits further investigation. 

Data Reduction: 

The data reduction methods developed show considerable 
promise and when circuit details are completed, should prove 
extremely valuable. 
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Figure 36. Vibration Exciter - Thrust Axis 



Figure 37. Horizontal Vibration Setup 

~~ 
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Figure 38. Horizontal Vibration Setup 



DIFFERENCE KE2E3 
AMPLIFIER 

L 

E3 KA(E1 - KE2E3) 

BECAUSE THE AMPLIFIER HAS HIGH GAIN, 

MULTIPLICATION 
CIRCUIT E2 

,El 
E2 

THEREFORE: E l  - KE2E3 0 AND E3 E K- 

4 
A(E1 - KEZE3) 

Figure 39. Ratio Computer 



SIGNAL SUMMER 

Consider three ident ica l  triode amplifiers which can be symbolized a s  voltage 
generators of internal impedance rp.  The mesh equations are: 

-p Egl  = I, ( r p + R I )  + I2 R I  + 1 3 R I  

- p E g 3 = 1 3 ( r p +  R I ) +  I l  R I  + I2 R I  

If a l l  three stages are identical:  

- 3~ E g  I = 3 I 1  r p  + 31,RI  + 3 I IR I  +311 RI 

I l  ( r p  + 3 R I )  = p E g l  

- -PE g I - 
' 1  3 R I + r p  

Simi lar i ly ,  for n ident ica l  stages: . 
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RANDOM SIGNAL ANALYSIS 

The differences between a periodic s ignal  voltage and a random 
signal  voltage can be graphically described by plot t ing hypothetical 
samples of each with respect t o  t i m e  as  i n  Figure 1. Further, p lo ts  
of acceleration, and spectral  density a s  i n  Figure 2 w i l l  help t o  
i l l u s t r a t e  some of the  propert ies  of both types of signals.  I t  i s  
obvious f r o m  the  f igure tha t ,  although periodic s ignals  can be measur- 
ed i n  terms of acceleration, random signals  are  best t reated i n  terms 
of  acceleration density. 

The outstanding feature  of a per iodic  s ignal  i s  t h a t  it can 
readi ly  be described by a simple periodic function o r  a Fourier series 
of per iodic  functions and tha t  the amplitude of the  s igna l  i s  en- 
t i r e l y  predictable as  a function of t i m e .  A random s igna l  presents 
some d i f f i c u l t i e s  i n  t h i s  respect. By "random" we  mean t h a t  the  
amplitudeof the  s igna l  can theoret ical ly  be any value. "Gaussian" 
means t h a t  the  amplitude dis t r ibut ion follows the  normal curve of 
s t a t i s t i c a l  analysis.  This i s  generally the  type of dis t r ibut ion 
referred t o  as  "random noise'' and i s  the only type of dis t r ibut ion 
t o  be discussed here. White noise" r e fe r s  t o  a constant spectral  
density over a given bandwidth. The "spectral  density" of a random 
s igna l  can be defined as: 

2 
0 

G = l i m i t  - 
B-0 B 

where: B i s  frequency bandwidth f - f and a i s  the  r m s  acceleration. 2 1 

Thus : 

I 

Which reduces to o = (G  B) E 
t e r m  "Power Spectral  Density" re fers  t o  p lo ts  of veloci ty  d is t r ibu t ions  
versus frequency. 

for  bandlimited white Gaussian noise, The 

With reference t o  the Normal Curve of s t a t i s t i c s ,  one can say t h a t  
68% of the  time the  s ignal  amplitude i s  less than the  r m s  value, and 
tha t  97% of the  t i m e  the  amplitude i s  less than three t i m e s  the  r m s  
value. The r m s  value referred t o  i s  derived from the  heating e f f ec t  
on a r e s i s to r  caused by a randomly f luctuat ing current. 

Enclosure 3 
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Comparison B e t w e e n  Periodic and Random Sisnals  

Future Amplitude i s  Predictable 

\-r 

'Gaussian P r  obabil i t y  Function 

Future Amplitude N o t  Predictable 

Figure 1 
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Of par t icu lar  importance i n  random signal  analysis is  the proper 
select ion of the  equipment employed t o  measure random voltages. TO 
explain why one must derive the  relat ionships  between ''peak", average'', 
and " r m s "  values of a sinusoidal s ignal  and compare one 's  r e su l t s  with 
corresponding values for  "random". 

An I I r m s "  value of a sinusoidal function is  defined i n  t e r m s  
of t he  average power diss ipat ion of a sinusoidal current i n  a resist- 
ance. I f  i is the  instantaneous current,  and I is  the  maximum valuer 

2 
P = i R  

2 2 2 i = I s i n  x which isasinusoida fun t i on  t h a t  never crosses the  
abscissa,  The average value of I s i n  x i s  2 = 

3 3 '  
(F) I - 

2 

The voltage corresponding t o  the average current is: 

v = ( T )  R =  ( - i2) ' R = - I R  = Vmax X 0.707 = rms value. 
I - 

(2) 
The "average" value of a sinusoidal function can be found by dividing 
the  area under the  curve by the  length of a half  period; 

Vmax 

The r a t i o  of I ' r m s "  to"average" for  a sinusoidal function i s  1.11. The 
r a t i o  for  white Gaussian noise is 1.25. Thus, an ordinary averaging 
type a.c, vacuum tube voltmeter such a s  the  Bal la t ine Model 300 or 
H e w l e t t  Packard Model 1051 is made t o  read the  I ' r m s "  value of a 
sinusoidal voltage through the  u s e  of a sca le  factor  of 1-11 and can 
be - aade t o  indicate  the  t rue  'Irms" of a white Gaussian noise s ignal ,  
I n  the  l a t t e r  case the  m e t e r  reading is multiplied by the  scale factor  
ra t io :  

1.25 
1 . 1 1  

-= 1.13 
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Ordinarily,  due t o  l h i t a t i o n s  of m e t e r  amplif ier  dynamic 
range, t he  necessi ty  of adding a 3,000 ufd, time-averaging capaci tor  
across the meter terminals, and the l imi ta t ions  w i t h  respect  t o  the  
types of  random signal  which can be measured, it is  better t o  use a 
thermocouple type voltmeter o r  a special "square law" detector  type 
of instrument such as  the Ballantine -del 320-, The Bal lant ine m e t e r  
has an advantage over thermocouple instruments because thermocouples 
burn out  when overloaded, whereas the  c i r c u i t r y  of t h e  Model 320 
voltmeter, as is t r u e  a lso with m o s t  A,C, vacuum-tube voltmeters, 
i s  designed i n  such a way t h a t  the m e t e r  amplif ier  w i l l  l i m i t  t he  
cur ren t  flow t o  the  indicator  well below the  burnout point,  The 
Model 320 employs a special  segmented diode c i r c u i t  t o  simulate the 
parabol ic  curve desired.  
c i rcui t  is  a power l a w  device rather  than square law and therefore  
can, under ce r t a in  conditions, lead t o  inaccuracies,  

It i s  important t o  remember t h a t  t h i s  
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Required Loop Lenqth for  Random Siqnal Analysis 

One problem it i s  necessary t o  solve i f  one is  t o  make an 
accurate analysis of a random signal  v ia  the  tape recorder-tape 
loop method concerns the lenqth of the  loop. The der ivat ion of 
the  minimum length for  reasonably accurate analysis  as  enclosed 
here is made with the  assumption t h a t  the  standard e r ro r  of the  
spectral  density is  proportional t o  the standard e r ror  of the  mean 
square value of white noise passing through a s ingle  degree of 
freedom system. This i s  t r u e  i f  the  mean square value of the  out- 
put of the  f i l t e r  is  divided by the  bandwidth of the f i l t e r .  Note 
the  definit ion: 

-Y 

( r m s  acceleration) 
~~ 

Spectral density, = G = l i m i t  (noise bandwidth ) 

Se =J& x 100 c O/O 

Where: 

Se = standard e r ro r  of mean square value of white noise 
passing through a l inear  s ingle  degree of freedom 
system. 

T = integration t i m e  of the  squared output. 

f = center frequency of the  f i l t e r .  

s =  Absolute Bandwidth of F i l t e r  = B = r e l a t ive  bandwidth - 
Center frequency of f i l t e r  f 

Enclosure 4: 
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C i s  a correction factor  defined by: 

The s i n  t e r m  can be eliminated i f  8 is small. 
CW 0.9 9.  For larger  ( T f 8 ) , c becomes closer t o  1. 

If ( T  f 8 ) = 8 ,  

It has been found tha t  8 % f gives a good compromise between 
t h e  choices of a long analysis time-unnecessarily detai led analysis,  
and short  analysis time--lack of enough de ta i l ,  

-1/3 % I f  it is  decided t h a t  Se = 40 f 

and Se = 10.0% a t  64 cps 

Se = 4.0% a t  1000 cps 

T h i s  value of Se has been found t o  correspond w e l l  with the  e r rors  
involved i n  acceleration sensing, recording and playback. The 
length of the  tape loop then becomes: 

- fi: 2 seconds 5 6 . 5 2  - 3190 T =  
S e 2 f 8  

Notice tha t ,  by choosing t h e  standard error function carefu l ly ,  
the loop length becomes independent of frequency. 
discussion of th i s  and other  data analysis problems i s  presented i n  
Reference (6) .  

A more detai led 
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Multi-Band Pass F i l t e r  Analyzer - Equalizer 

The random signals  recorded during the  P-21 vibrdtion tests were 
fed in to  the MB 80 bandpass f i l t e r  random voltage arialyzer system 
(Enclosure - Figure 1). The r e l a t ive  m e r i t s  of the  system can he 
compared by noticing the  close agreement between the  m u l t i f i l t e r  . 
plo t  i n  Figure(24) and a p lo t  of response amplitudes made w i t h  a 
sweep-frequency bandpass- fi l t e r  analyzer. The Technical Products - 
Analyzer incorporates a 5 cycle f i l t e r  swept slowly across the fre- 
quency band of in te res t .  

I n  order t o  determine how accurate the  resul t ing curve i n  Figure 
(23) is  and by comparison, how good the  m u l t i f i l t e r  p lo t  i s ,  we m u s t  
determine what sweeping r a t e  w i l l  r e su l t  i n  a negl igible  analyzer 
e r ror ,  and what length the  tape recorder loop m u s t  be t o  cons t i tu te  
a f a i r  sample of the en t i r e  random t e s t .  These two items are  the  
chief c r i t e r i a  for  an accurate analysis. The shortest  sample time 
for  a tape loop analysis of a random signal  of 2000 cps bandwidth 
which gives a standard e r ror  i n  t h e  same range as t ha t  developed i n  
data recording and playback, i s  i n  the  order of two seconds. The 
scanning ra te  w h i c h  w i l l  allow the  energy within the  f i l t e r  t o  reach 
a nearly steady-state condition before the  f i l t e r  has been moved by 
25% of i t s  bandwidth can be expressed: cps/s = 3 where B i s  the  

bandwidth of t he  scanning f i l t e r .  For a 5 cycle wide f i l t e r  and a 
2,000 cycle wide spectrum, the scanning t i m e  should be a t  l ea s t  5 1 / 2  
m i n u t e s ,  This reqairement i s  sa t i s f i ed  by the  TP Analyzer employed 
i n  making the p lo t  of Figure (23). T h e  t i m e  factor  i s  considerable 
i f  a detai led picture  of a random signal  is desired. ;i 2,000 cycle 
bandwidth s igna l  careful ly  analyzed v ia  a 2 cycle wide f i l t e r  would 
necessi ta te  an analysis t i m e  approaching two hours o r  more. Thus, 
w e  have shown t h a t  the  80 second graphs derived from the  inu l t i f i l t e r  
system srovide a time advantage and, though lacking i n  some d e t a i l s ,  
agree within a f e w  db with those obtained v ia  the  Technical Products 
Ana l y  ze r . 

(A 

The reason tha t  the  80 channel f i l t e r  system can be cal ibrated 
t o  read d i rec t ly  i n  g2/cps without a squaring operation l ies i n  the 
f ac t  t h a t  the output of a f i l t e r  which i s  narrow with respect t o  the 
bandwidth of the s ignal  fed in to  the f i l t e r  i s  Gaussian regardless 
of  the  nature of the s ignal  input. (See Ref. 4 ) .  M r .  S. P. Lloyd 
(Reference 7 )  indicated tha t  there  a re  conditions where the  s ignal  
output would be less Gaussian than the input, but such occurrences 
should be rare. 

Enclosure 5 
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The m u l t i f i l t e r  analyzer concept can be extended i n  the  form 
of an automatic equali’zer-analyzer control  for  a vibrat ion exc i t e r  
system. The St ruc tura l  Dynamics Branch w i l l  soon have such a system 
i n  operation, The chief benefi t  of  having the automatic equalizer- 
analyzer w i l l  be the  time saving, Equalization time w i l l  be cut  
from hours t o  seconds, even for  most complex spacecraf t  s t ructures .  
The operat ion of t he  system can readi ly  be understood by re fer r ing  
t o  Enclosure - Figure 2 and comparing it with Enclosure - Figure 3 .  
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Frequency Sweep Schedule 

Vibration 
Axis - 

c Thrust 
(2-2 axis) .. 

Lateral  
(x-x axis) 

Lateral  
(y-y axis) 

& 

Frequency 
Ranqe 
cps 

Test 
Duration 
- m i n ,  

- 

5-50 0.83 
50-500 0.83 

500-2000 0.50 
2000-3000 0.15 
3000-5000 0.18 

Total - 2.5 min, 

5-50 0.83 
50-500 0.83 

500-2000 0.50 
2000-5000 0.33 

Acceleration 

g, 0-to-peak 
- 

1.5 (a) 
7.1 

14. 
36. 
14. : (b) 

0.6 (a) 
1.4 
2.8 

11.3 (b) 

2.5 m h ,  

Grand Total - 7.5 min. 

Total - 

Note (a) Within maximum amplitude l i m i t  of vibration generator. 
Note (b) Within maximum frequency l i m i t  of vibration generator. 

2.2 Random Motion Vibration. Gaussian random vibrat ion 
s h a l l  be applied by shaping the input according to the  tes t  schedule 
given below, Transition from one PSD t o  the  other s h a l l  be made 
using a f i l t e r  whose character is t ic  ro l lo f f  i s  a t  a r a t e  of approx- 
imately 1 2  db/octave. Peak-notch equalization, with spacecraft 
instal led,  a t  specified PSD s h a l l  be within f 3 db, Rolloff characteris- 
t i c  above 2000 cps s h a l l  be a t  a r a t e  of 40 db/octave o r  greater. 

Random Vibration Schedule 

. 
Frequency - T e s t  - PSD Approx, 

Accel, Vibration Ranqe Duration Level 
Axis CDS - m i n  . &cps g-rms 

5-200 0.06 3.4 * 
Thrust 200-400 2 See Par. 2.2 1.7 

(2-2 axis) 400-2000 0.005 2.8 
Total  5.3 

* Within maximum amplitude l imi t  of  v ibrat ion generator. 
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Random Vibration Schedule-Cont'd 

V ib.r a t  f o n 
PSD Frequency T e s t  - 

Ranqe Du=on Level 
P A x i s  SEE _s min q-ms 

Latera l  
ex-x axis) 

La%eral 
(y-y axis)  

& 

5-25 0.30 2.5 * 
25-100 2 See Par. 2.2 1.2 

100-2000 (each ax is )  0.005 3 .1  

T o t a l  4.2 
Total  6 min, 

2-3 Combustion Resonance me12 This tes t  simulates a 
measured combustion o s c i l l a t i o n  condition observed i n  t h e  X-248 sol id-  
propellant rocket motor, 
The test, i s  conducted by t ravers ing the 100 cps wide band slowly such 
t h a t  1/4 ninute is consumed i n  moving from 550 t o  650 cps. Rate of  
change of frequency with t i m e  s h a l l  be proportional t o  frequency. 

T h e  range of  t h e  tes t  is f r o m  550 t o  650 cps. 

2-3 ,, I Apparent Weiqht To determine control  accelerat ion t o  
be used for t h i s  t e s t ,  the apparent weight of  t he  spacecraf t  i n  the 
v i c i n i t y  o f  600 cps may be determined by measurement. T h i s  w i l l  require 
tha t  bot3 force and accelerat ion be measured a t  a point  near the space- 
c ra f t - j i g  in te r face ,  o r  the  apparent weight may be deduced a t  t h i s  poin t  
by measurement elsewhere. Control accelerat ion then is computed by 
dividing k 400 lbs, force ( th rus t  ax is )  o r  * 50 lbs, force ( l a t e ra l  axes) 
by tke apparent weight determined -- from the formulax apparent weight = 
foree/g-acceleration (resolved a t  a point  near the j ig-spacecraft  i n t e r -  
f ace ) ,  The apparent weight should be averaged from measurements made 
over t he  550-650 cps range, 

2,3,2 Force Proqramminq A superior  a l t e rna te  method may be 
subst%tJted wherein v ibra t ion  force is  programmed by servoloop cont ro l  
of a su i t ab le  jig scck- t ha t  It: 50 lbs, force ( l a t e r a l )  may be applied 
at f?e point  where the spacecraft  is i n s t a l l ed ,  I f  the j i g  i s  properly 
cal ibrated,  and control  s ignals  compensated f o r  j ig-driving force,  
apparent w e i g 3  of the  spacecraf t  need not  be determined. 

2,3,3 Assumed Apparent Weiqht A second a l t e r n a t e  method may 
be employed whereic an apparent weight of the spacecraf t  i s  assumed t o  
be seven pounds. With %his assumption, the cont ro l  accelerat ion should 
be 5 7  g (0-to-peak) for t h rus t  axis vibrat ion,  and 7 . 1  g (0-to-peak) 
f o r  each of the two l a t e r a l  axes. 

* 

* Witbin maximum amplitude of v ibra t ion  generator. 
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